
LLNL-JRNL-404606

The Blast-Wave-Driven Instability as a
Vehicle for Understanding Supernova
Explosion Structure

A. R. Miles

June 11, 2008

Astrophysical Journal



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 1 

 

THE BLAST-WAVE-DRIVEN INSTABILITY AS A VEHICLE FOR 

UNDERSTANDING SUPERNOVA EXPLOSION STRUCTURE  

  

AARON R. MILES 

Lawrence Livermore National Laboratory, Livermore, CA 94550; 

miles15@llnl.gov 

 

ABSTRACT 

Blast-wave-driven instabilities play a rich and varied role throughout the 

evolution of supernovae from explosion to remnant, but interpreting their role is 

difficult due to the enormous complexity of the stellar systems. We consider the 

simpler and fundamental hydrodynamic instability problem of a material interface 

between two constant-density fluids perturbed from spherical and driven by a 

divergent central Taylor-Sedov blast wave. The existence of unified solutions at 

high Mach number and small density ratio suggests that general conclusions can 

be drawn about the likely asymptotic structure of the mixing zone. To this end we 

apply buoyancy-drag and bubble merger models modified to include the effects of 

divergence and radial velocity gradients. In general, these effects preclude the true 

self-similar evolution of classical Raleigh-Taylor, but can be incorporated into a 

quasi-self-similar growth picture. Loss of memory of initial conditions can occur 
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in the quasi-self-similar model, but requires initial mode numbers higher than 

those predicted for pre-explosion interfaces in Type II SNe, suggesting that their 

late-time structure is likely strongly influenced by details of the initial 

perturbations. Where low-modes are dominant, as in the Type Ia Tycho remnant, 

they result from initial perturbations rather than generation from smaller scales. 

Therefore, structure observed now contains direct information about the explosion 

process. When large-amplitude modes are present in the initial conditions, the 

contribution to the perturbation growth from the Richtmyer-Meshkov instability is 

significant or dominant compared to Rayleigh-Taylor. Such Richtmyer-Meshkov 

growth can yield proximity of the forward shock to the growing spikes and 

structure that strongly resembles that observed in the Tycho. Laser-driven high-

energy-density laboratory experiments offer a promising avenue for testing model 

and simulation descriptions of blast-wave-driven instabilities and making 

connections to their astrophysical counterparts. 

 

Subject headings: hydrodynamics – instabilities – supernovae: general – 

supernovae: individual (Tycho) – supernova remnants 

 

1. INTRODUCTION 

  



 3 

 Supernovae are among the most dramatic explosions in the universe. Type 

II supernovae follow the core collapse of a massive star (Wheeler 1996), while 

Type Ia supernovae are typically believed to be thermonuclear explosions of 

carbon-oxygen white dwarfs that have accreted enough material to initiate carbon 

burning (Hoyle and Fowler 1960; Nugent et al. 1997; Hillebrandt and Niemeyer 

2000). In both cases, the explosion dynamics are complicated by hydrodynamic 

instabilities that make spherical symmetry impossible. In core collapse 

supernovae, instabilities driven by the supernova blast wave can mix heavy core 

elements into the outer layers, making them observable much earlier than would 

be predicted by one-dimensional models (Falk and Arnett 1973; Chevalier 1976; 

Fryxell et al. 1991). This mechanism has been invoked to help explain 

observations of SN1987A, in which heavy core elements (in particular 56Ni 

produced in Si burning) were observed at the photosphere within five days after 

core collapse rather than after six months as predicted by 1D models (Blinnikov et 

al. 2000; Mitchell et al. 2001; Muller et al. 1991; Tueller et al., 1990). To date, 

2D SN simulations have reduced the predicted 56Ni observation time from months 

down to days, but most produce heavy metal velocities that are still low by about 

a factor of two (Kifonidis et al. 2003; Muller et al. 1991). In the calculations by 

Kifonidis et al., neutrino-driven convection perturbs the inner Si/O interface, and 

these perturbations are driven unstable with the passage of the outgoing blast 

wave. The instabilities produce long spikes of heavy core material with velocities 
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that are initially high enough, but these fast spikes are decelerated when they 

collide with the dense He layer that has formed after shock transmission through 

the He/H interface. They dissipate energy in shocks and are decelerated down to 

about half the observed velocities. The He/H layer, though unstable, was not 

perturbed in this calculation, leaving open the possibility that its instability might 

lead to breakup of the shell and allow fast inner spikes to escape undecelerated. 

Another important question is whether differences in 3D vs 2D spike velocities 

are important, or differences between the growth of turbulent mixing zones and 

2D laminar simulations. Finally, can special choices of the initial perturbation 

spectrum allow inner material to escape before the formation of the He shell? 

Indeed, more recent calculations by Kifonidis et al. (2006) do yield metal 

velocities that are high enough due to the early presence of kinked shocks and 

resultant shock-driven Richtmyer-Meshkov (RM) instabilities (Meshkov 1969; 

Richtmyer 1960). The RM instability is the growth of perturbations on a material 

interface due to vorticity deposited by a transmitted shock. While the RM 

instability is typically considered for planar shocks transmitted through perturbed 

interfaces, it is important to note that growth depends on obliqueness of the shock 

relative to the interface, whether the initial perturbation is on the interface or the 

shock front. 

In thermonuclear supernovae, many details of the combustion process 

remain unanswered, and a number of different models have been considered. 
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These include detonation (Arnett 1969), deflagration (Ivanova et al. 1974; 

Nomoto et al. 1976), and delayed detonation (Khokhlov 1991). Delayed 

detonation models involve a transition from an initial deflagration phase to a 

detonation phase that is initiated in an ad hoc fashion or via a posited physical 

mechanism, as in the pulsating delayed detonation (PDD) (Ivanova et al. 1974; 

Khokhlov 1991), pulsating reverse detonation (PRD) (Bravo and Garcia-Senz 

2006), and gravitationally confined detonation (GCD) (Plewa et al. 2004) models. 

In any model where deflagration is important, the evolution of Rayleigh-Taylor 

(RT) (Rayleigh 1899; Taylor 1950) unstable flames influences the rate of 

combustion and the final composition of the remnant (see, for example, Khokhlov 

1995 and references therein). 

For any type of supernova, the expanding ejecta are eventually decelerated 

by the circumstellar medium, driving additional Rayleigh-Taylor growth (Gull 

1973). The 400-year-old Tycho supernova remnant, believed to be the result of a 

Type Ia explosion, provides a dramatic example of this process. In x-ray images 

taken by the Chandra observatory, instability-driven spikes of heavy material are 

clearly visible and have grown out to the forward shock, which is also highly 

perturbed (Warren et al. 2005). These images raise a number of questions, 

particularly because current multidimensional remnant simulations predict that the 

shock would have pulled away from the developing RT spikes before the present 

time (Dwarkadas 2000; Wang and Chevalier 2001). Some have suggested that this 
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discrepancy could be resolved by large-scale density inhomogeneities in the 

circumstellar medium (Jun et al. 1996) or high-density-contrast clumps in the 

ejecta (Wang et al. 2001). Others point to evidence of cosmic ray acceleration 

behind the forward shock as a means of effectively increasing the compressibility 

of the material between the shock and interface and thereby reducing their 

separation (Decourchelle et al. 2000; Blondin and Ellison 2001).     

A general question for all of these shock-driven RT-unstable divergent 

systems is what determines the late-time asymptotic structure of the mixing 

region? How does this structure depend on the driving accelerations, the radial 

density profile, and the initial perturbations that seed the instability growth? 

 The apparent relevance of shock and blast-wave-driven hydrodynamic 

instabilities to supernova dynamics has led to interactions between the 

astrophysics, compressible turbulent mixing, high-energy-density (HED) physics, 

and inertial confinement fusion (ICF) communities. In particular, laboratory HED 

and ICF systems routinely confront researchers with material interfaces driven 

unstable by interactions with shock and blast waves. Reflecting the background of 

these communities, much of the work that is done on hydrodynamic mixing in 

SNe draws, on the one hand, on the fundamental instability problems of classical 

RT and steady-shock RM, and, on the other hand, on complex, often multiphysics 

computational and experimental systems. These include numerical simulations of 

supernovae and laser-driven laboratory experiments that invoke Euler scaling to 
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make connections to their much larger astrophysical counterparts (Ryutov et al. 

1999; Remington et al. 2006 and references therein). 

In this paper, we consider what additional insight is to be gained from 

considering what is really a third fundamental instability problem that is more 

relevant than either RT or RM in isolation and somewhat less complex than the 

full system. Namely, we consider an idealized blast-wave-driven problem in 

which a localized source drives a spherical Taylor-Sedov blast wave that in turn 

drives a perturbed interface between heavier and lighter gamma-law fluids. 

Within this context, we use numerical simulations and simplified analytic models 

to consider the effect of the initial perturbation spectrum in determining the late-

time asymptotic state of the mixing zone and the proximity of the forward shock 

to the developing instability. We consider possible implications for both core 

collapse and thermonuclear supernovae. Finally, we discuss how laser-driven 

laboratory experiments might be used to help resolve some as yet unanswered 

questions in supernova explosion hydrodynamics.  

  

 

2. IDEALIZED BLAST-WAVE-DRIVEN INSTABILITY (BWI) 

 

 In the spherical idealized blast-wave-driven instability (BWI) problem 

(see Fig. 1), a perturbed interface separates a ball of denser fluid with initial 
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radius r0 and density ρ1 from a lower-density ambient medium with density ρ2. 

The central portion of the dense fluid (out to piston radius rp) is initialized with a 

high overpressure P and corresponding high temperature T and energy E. At time 

zero, this piston region begins to expand and drive a shock into the surrounding 

high-density fluid. If the mass outside the piston is large compared to the mass of 

the piston region (or rp << r0), then the outgoing shock develops into a spherical 

Taylor-Sedov blast wave (Taylor 1950; Sedov 1946a; 1946b) before reaching the 

perturbed interface. In that case, the unperturbed problem is characterized by four 

dimensional parameters: the radius r0, the density or mass of the ball, the density 

of surrounding fluid, and the drive overpressure (or energy or temperature). We 

define the density ratio η ≡ ρ2/ρ1, which we typically take to be not only less than 

one but much less than one. The problem specification is completed by giving the 

interface perturbation and the adiabatic indices of the two fluids, γ1 and γ2.   

The dynamics of the blast-wave-driven interface are illustrated in Fig. 2 

with a radius vs. time (r-t) diagram from a one-dimensional simulation performed 

with the hydrodynamics code CALE (Barton 1985). In this case, we pick an 

overpressure of 109 and an interface position that is 10 times greater than the 

piston radius. At the time it reaches the interface, the driving blast wave has a 

Mach number of 1800. The logarithm of the density is shown in grayscale, 

making visible the space-time trajectories of interfaces and waves. The outermost 

discontinuity is the blast wave shock propagating through the lighter material, and 
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the white line denotes the interface between the two fluids. The interface is shock 

accelerated and, because of the large density difference, is largely unaffected by 

the ambient fluid very early on. The interface then begins an RT-unstable 

deceleration due to the presence of the low-density ambient fluid, and a reverse 

shock is formed in the heavy fluid. Once the expanding interface has swept up a 

mass of low-density material that approaches the mass of high-density fluid, the 

reverse shock begins to propagate back toward the center, where it bounces and 

comes back again as a reflected shock. At a radius of about 1.5 times this equal 

mass point, the interface expansion is halted (or nearly halted), and it in many 

cases begins to fall back until it is reshocked by the reflected reverse shock. At 

late times, the main shock and the interface both expand with Taylor-Sedov blast 

wave scaling.  

In the SNR literature, the early constant-velocity phase is called the ejecta-

dominated (ED) phase while the extended late-time period is called the Taylor-

Sedov (TS) phase (or Sedov-Taylor) (Chevalier 1977). The two are separated by a 

more complicated intermediate phase that we will refer to as “the intermediate 

phase” or “fast growth phase”. The interface is unstable during the limited fast-

growth phase and the more extended Taylor-Sedov or slow-growth phase. As is 

apparent from Fig. 2, the equal-mass radius is the governing length scale in the 

blast-wave-driven interface problem. 
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The development of the instability is illustrated in Fig. 3, which includes 

log density images from a 2D RAPTOR simulation at several points in its 

evolution, each of which is labeled with its dimensionless time τ ≡ t/tm (tm is the 

equal mass time defined below) and interface radius ξ ≡ ri/rm. RAPTOR is an 

Eulerian Adaptive Mesh Refinement code that uses a second-order accurate (in 

space and time) Godunov method to numerically solve the Euler equations 

(Howell and Greenough 2003). In this simulation, η = 0.01 and the interface is 

seeded with a narrow Gaussian perturbation spectrum centered at mode 160 with 

width 20. The characteristic mode 160 is initially marginally linear with kh0 = 1/3. 

The incident blast wave crosses the interface at τ ≈ 0.2 between Figs. 3a and 3b, 

initiating the short-lived ED phase. The perturbations grow during the 

intermediate phase into outward “falling” spikes of material 1 and inward “rising” 

bubbles of material 2 as the interface approaches the equal-mass radius and begins 

to decelerate dramatically. The reverse shock forms and begins to propagate back 

towards the center in Fig. 3c when the interface has expanded to about the equal-

mass radius, where it converges in Fig. 3d. In Fig. 3e, the reflected reverse shock 

returns to the developing mixing zone, which is reshocked in Fig. 3f. This second 

shock exits the mixing zone in Fig. 3g on its way to overtake the main shock, 

having set a very complicated initial condition for the ensuing TS phase. At this 

point, considering the differences observed in 3D vs 2D simulations of blast-

wave-driven interfaces, we can’t really believe this 2D calculation’s prediction of 
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the internal structure of the mix region, and only suggest that there might not be 

anything left for the instability to act on during the TS phase.  

 

 

3. SELF-SIMILAR AND UNIFIED SOLUTIONS 

 

During the ED and TS phases, the unperturbed blast-wave-driven interface 

problem is characterized by only two dimensional parameters for small η and 

while the Mach number of the shock is high. In the ED phase, the ambient fluid 

density ρ2 drops out and the initial interface motion is determined by the pressure 

incident upon it rather than the full drive pressure, so we are left with ρ1 and P0 ~ 

E/r0
3. In the TS phase, the initial radius is small compared to the instantaneous 

interface and shock radii, and the mass of swept-up low-density fluid is much 

larger than the mass of high-density fluid, leaving only the drive pressure and the 

ambient fluid density. With only two dimensional parameters, the Euler equations 

admit a self-similar solution in which all the fluid fields depend on a single 

variable that is a combination of the two dimensional parameters and the space 

and time coordinates (Sedov 1959).  

If there are three independent dimensional parameters instead of two, the 

result is what Truelove and McKee (1999) have referred to as a “unified 

solution”. When written in dimensionless form using the correct spatial and 
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temporal scaling, a unified solution is still independent of the characteristic 

dimensional parameters (Sedov 1992). That is, radial profiles evolve in 

dimensionless time and space, but profiles from two systems with different values 

of the three dimensional parameters differ only by a scale factor when viewed at 

the same dimensionless time. The classic example is the evolution of the Taylor-

Sedov blast wave to the point that the ambient pressure is no longer negligible 

(the so-called point explosion with counter pressure), and so enters as the third 

dimensional parameter in addition to the energy and ambient density (Sedov 

1959; 1992). 

Like the very closely related nonradiative SNR problem (McKee and 

Truelove 1995; Truelove and McKee 1999), the blast-wave-driven interface 

problem qualifies for a unified solution, from the ED stage through the 

intermediate phase and into the TS phase, if the density difference is very large, or 

equivalently, if r0 is very small compared to the equal mass radius. The three 

remaining dimensional parameters are the heavy-fluid densities or mass, the drive 

pressure or energy, and the initial interface radius. The unified nature of the blast-

wave-driven interface can be illustrated in a number of different ways. In Fig. 4, 

we show r-t diagrams from 1D CALE simulations of a spherical blast-wave-

driven interface with four different values of the density ratio η ranging from 

unity (equal densities) to 0.001. In each plot, the radial and time dimensions are 

scaled by the equal-mass radius and time:  
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Up to an order-unity constant factor, the equal-mass time is that at which the TS 

blast wave would reach the equal-mass radius if propagating through just the 

ambient material. To lowest order in the density ratio, these agree with the 

characteristic radius and time reported by Truelove and McKee (1999) for the 

nonradiative remnant. Because of the unified nature of the problem, the scaled r-t 

plots in Fig. 4 look the same at low η. Of course as the density ratio approaches 

one, the scaled solution must transform into the Taylor-Sedov blast wave and, 

over some region, the unified solution is not valid.  

If we move from 1D to 2 and 3D, we might expect that the existence of a 

dimensionless unified solution implies dimensionless instability growth as long as 

the initial perturbations are scaled with r0, as claimed by Chevalier et al. (1992) 

and Truelove & McKee (1999). Drive-energy independence is illustrated in Fig. 

5, where we show log density plots from two RAPTOR simulations that are 

identical except that the drive energy differs by a factor of 100. The systems are 

shown at the same scaled time and, although the physical time differs by a factor 

of 10, the developing instability looks qualitatively the same in the two systems. 

Before discussing dependence of the scaled instability growth on the density ratio, 

we first turn to analytic modeling of the nonlinear phase of instability evolution.   
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4. BUOYANCY-DRAG MODEL FOR THE BLAST-WAVE-DRIVEN 

INTERFACE 

 

Blast-wave-driven systems differ from classical RT in three important 

aspects: the RM component, compressibility, and the time dependence of the 

driving acceleration.  The most important compressibility effect is the growth of 

perturbations due to material decompression in the rarefaction behind the shock 

front. We can incorporate this perturbation stretching into the simplest of models 

by starting with a buoyancy-drag (BD) model, which gives the acceleration of 

nonlinear bubbles or spikes due to a buoyancy term and a drag term (Davies and 

Taylor 1950; Hanson et al. 1990; Dimonte and Schneider 1996; Oron et al. 2001), 

and adding on a third term to account for the decompression (Miles 2004). The 

equation for bubbles is  

! 

d

dt

dh(t)

dt
= ˜ A (t)g(t) "

˜ C 

#
uinst (t)

2
+

d

dt
$(t)h(t).    (2) 

In equation (1), 

! 

˜ A  is the post-shock modified Atwood number 

! 

˜ A " A 1+#*( ) / C
a

+#*( ) where the post-shock Atwood number is given by 

! 

A = 1"#*( ) / 1+#*( ), 

! 

˜ C  is the modified drag coefficient 

! 

˜ C " C / C
a

+#*( ) , the drag 

coefficient is approximately given by C = 2π{3,1.22}2D,3D (Davies and Taylor 
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1950; Layzer 1955), the added mass coefficient Ca = {2,1}2D,3D, g(t) is the 

interface acceleration, uinst(t) is the bubble or spike speed relative to the 

background fluid, and λ(t) is the perturbation wavelength, in which the time-

dependence accounts for transverse stretching due to divergence. Here and 

throughout, we use asterisks to denote post-shock densities and density ratios. The 

equation for spikes is obtained from equation (2) simply by replacing η* with 

1/η*. In the third term,  

! 

"(t) #
$u(r,t)

$r

% 

& ' 
( 

) * 
r= r

i
(t )

        (3) 

is the velocity gradient evaluated at the instantaneous interface position. In a 

previous publication, we constructed such a model under certain limiting 

assumptions, most notably by focusing on the case where 

! 

u = (" /#) $ r / t , which 

applies during the TS phase (Miles 2004). The uinst term recognizes the fact that 

the bubble or spike velocity in the rest frame of the unperturbed interface consists 

of two parts,   

! 

dh

dt
= u

inst
(t) +"(t)h(t)        (4) 

where uinst is the instability velocity due to RT and RM, and the second term is a 

background (de)compression contribution. When equation (4) is inserted into 

equation (2), the compression terms cancel and we are left with a standard 

buoyancy-drag equation: 
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! 
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˜ C 

#
uinst (t)

2       (5) 

for the evolution of the instability velocity. Equation (5) can thus be solved first 

for uinst(t), and the solution inserted into equation (4), which can then be 

integrated to find the total perturbation growth: 

! 

H(t) = h
*
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where h* is the post-shock initial amplitude and we have defined the modified 

amplitude function  

! 
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 In some cases, a simplified analytic form of uinst(t) is justified. Two which 

are routinely used in application of BD models are that of impulsive acceleration 

(Shvarts et al.1995; Alon et al. 1994, Oron et al 2001) and terminal-velocity RT 

(Davies and Taylor 1950; Oron et al 2001). In the impulsive-acceleration case, 

corresponding to nonlinear RM, 

! 

g(t) = u
0
"(t # t

0
) and the drag term provides 

deceleration according to   
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Within the simplest impulsive model of Richtmyer (1960), or as modified by 

Meyer and Blewett (1972) for the heavy-to-light case, 

! 

u
0

= k
0
a
0
Au

i0
 where 
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! 

k
0

= m
0
/r
0
 is the initial wavenumber,

! 

a
0
" h

0
+ h*( ) /2 , and h0 is the initial pre-

shock amplitude. 

 In the terminal velocity RT model, commonly applied to nonlinear RT 

bubbles, buoyancy and drag balance one another to give 
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where the plus and minus signs are for bubbles and spikes, respectively. 

 Finally, since spikes at high Atwood number might grow significantly 

before approaching terminal velocity, a free-fall model wherein drag is neglected 

might be useful: 
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Unlike the previous two simplified models, the free-fall model includes 

contributions from both RT and RM, the latter through an initial post-shock 

growth velocity. The terminal velocity BD model cannot include an RM 

contribution because by assumption the growth velocity at any time is 

proportional to the square root of the instantaneous acceleration. 

 Inserting the terminal-velocity RT instability velocity into equation (6), we 

find 

! 

H(t) = h
*

+
"
0
r
0

C
fBD (t)        (11a)  
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where we have defined the BD growth and stretch functions: 

! 

fBD (t) " dt'e
# $dt% A(t')r(t')g(t')% /r

0      (12) 

! 

q(t) " e# $dt% ri(t)

r
0

.        (13) 

Significantly, where the unified solution to the 1D problem is valid, strict 

unified instability growth requires that both fBD and q are unified, while 

approximately unified growth of short wavelength modes requires only that the 

ratio fBD/q is unified. In fact, since the growth and stretch functions contain 

quantities that are not normalized to the equal-mass radius and time, we should 

not expect them to be unified. In Fig. 6, we plot the scaled evolution of several 

relevant functions at a wide range of density ratios and two different piston radii. 

The idea is to see which are unified, at least up to small differences in the post-

shock Atwood number. Figure 6a shows that the exponential decompression 

function appearing in both equations (12) and (13) is not unified. Instead, it is 

proportional to rm/r0 (Fig. 6b). Based on the structure of the growth and stretch 

functions, this implies that fBD and q are not unified, but the product of either one 

and (r0/rm)2 is (see Fig. 6c-6e). Therefore, the ratio fBD/q is unified as well (Fig. 

6f). 
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Consequently, nonlinear single-mode RT bubble growth in the BWI as 

predicted by the BD model is not strictly unified, but is approximately unified for 

short-wavelength modes scaled with r0. In addition to small differences in the 

post-shock Atwood number that come with different pre-shock density ratios, this 

conclusion also neglects the effect of the density ratio on the factor by which 

perturbation amplitudes are compressed by the shock as it is transmitted through 

the interface. This does not introduce an additional limitation on when unified 

single-mode perturbation growth may arise, however, since we already require 

that the initial amplitude term in equation (11) be comparatively small. 

Nevertheless, we always include the η-dependent shock-compression factor in 

actual implementation of the buoyancy-drag model. 

 

 

5. BUBBLE-MERGER MODEL 

 

Because larger bubbles rise faster than smaller bubbles and a larger bubble 

rising above its smaller neighbors is free to expand laterally, nonlinear RT is 

characterized by an inverse cascade to larger and larger structures (Sharp 1984; 

Glimm and Li 1988). In the case of constant acceleration, this results in an ever-

increasing instability growth rate.  
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Bubble merger models represent this inverse cascade as the merger of one 

generation of bubbles (of some size) into a succeeding generation of larger 

bubbles (Sharp 1984; Glimm and Li 1988). This can in principle result in self-

similar instability growth that is independent of the initial perturbation spectrum – 

in which case we say that memory of the initial conditions has been lost (Youngs 

1984). The higher the driving acceleration, the shorter the merger time at the ith 

generation, which is defined as the time at which the ith merger is complete minus 

the time at which it begins. Even in classical RT (incompressible, constant 

acceleration), the merger time grows larger with each successive generation as the 

bubble diameter λi increases [

! 

" i = ti+1 # ti ~ $ig  (Sharp 1984; Glimm and Li 

1988; Alon et al. 1994)]. In a blast-wave-driven system, the driving acceleration 

decays away in time, and so the time to generate each successive generation of 

larger bubbles grows much, much faster than in classical RT (Miles 2004). 

In classical multimode RT, self-similarity reduces to h(t)∝λ(t)∝gt2 and is 

attained after many generations of bubble merger (Sharp 1984). Instead of 

defining a merger law and evolving the model, we can get the same result by 

starting with a similarity ansatz and using it to replace λ(t) in the terminal velocity 

model (Shvarts et al.1995; Alon et al. 1994). Guided by the structure of the BWI 

BD equation and our previous work, we assume a quasi-self-similarity (QSS) 

ansatz     
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! 

"(t) =#h(t)e$ %dt& r(t)

r
0

=#h(t)q(t) .      (14) 

Self-similarity can then be modified through the exponential factor, which 

describes decompression, and r(t)/r0, which accounts for divergence. The stretch 

function q(t) defined in equation (13) in the context of single-mode growth now 

appears as a quasi-self-similarity function that describes deviations from classical 

self-similarity. In a system with divergence but no stretching, the ratio of 

wavelength to amplitude grows in proportion to the interface expansion factor. 

With stretching but no divergence, as with planar blast waves, the ratio decays in 

time. If  

! 

u = (" /#) $ r / t , as is approximately true in the TS phase with β = 2/5, 

then 

! 

r(t) /r
0

= e
"dt#  and true self-similar growth is possible. 

 When equation (14) is inserted into equation (4), which can then be 

rewritten 

! 

d H(t)

dt
=
1

2
Exp " #dt$[ ]

A%

C

r(t)

r
0

g(t) ,     (15) 

the latter is integrated to give the quasi-self-similar growth solution  

! 

H(t) = h
*

+ 1

2 C
dt'e

" #dt$ r(t ')

r
0

A(t')g(t')$
% 

& 
' 

( 

) 
* 

2

.    (16) 

This same result can be obtained directly from a bubble-merger model without 

first assuming quasi-self-similarity when 

! 

u(r,t)" r / t  (Miles 2004). Using the BD 

growth function equation (12), we find: 
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! 

H(t) = h
* + "r

0
fBD (t)[ ]

2

       (17) 

! 

m(t) =
1

m
0

+ "# /2$ fBD (t)
% 

& 
' 

( 

) 
* 

+2

,      (18) 

where 

! 

" #
$

4C
 is the same self-similarity α of classical RT turbulent growth. In 

equation (18), m(t) is the perturbation mode number 2πr(t)/λ(t). 

 If the system succeeds in reaching an asymptotic state where the second 

term dominates, then memory of the initial conditions is lost:  

! 

H(t)"# dt 'e
$ %dt ''& A(t ')g(t ')r(t ') /r

0&[ ]
2

     (19) 

! 

m(t)"
2#

$%
dt 'e

& 'dt ''( A(t ')g(t ')r(t ') /r
0([ ]
&2

    (20) 

If we neglect divergence and stretching and assume constant acceleration, we 

recover the classical results 

! 

h(t)"#Agt 2 , 

! 

"(t) =#h(t).  

 

 

6. MODEL LIMITATIONS AND IMPLEMENTATION 

 

 In applying the buoyancy-drag and QSS growth models developed above 

to the BWI, we are hindered by two significant model limitations. First of all, we 

have not accounted for the time- and space-dependent radial density gradient. 

Since the density gradient away from the interface is typically positive, spikes and 
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bubbles tend to see an Atwood number that is decreasing as the perturbation 

grows. The blast-wave-driven flow leads to the formation of high-density shells 

immediately behind the interface and the forward shock, and there are regions of 

large density gradient associated with each shell. The density gradient does not 

seem to be very important on the bubble side of the interface, since thin-shell RT 

growth (Ott 1972; Hurricane 2005) can continue once the bubble amplitude is 

comparable to and greater than the unperturbed shell thickness. It can provide the 

ultimate limit to spike growth, however, since spikes might eventually encounter 

a shell of material with density greater than their own. This effectively sets a 

maximum scaled spike amplitude that is set by the invariant density profile of the 

unified solution where it is applicable. We could in principle account for the 

density gradient by making the Atwood number dependent on both time and the 

perturbation amplitude. Since this makes the model so much more cumbersome, 

we instead typically ignore the effect on the bubble-side and limit the spike 

growth to the time-dependent width of the low-density shell ahead of the 

interface.  

 The second limitation is that the buoyancy-drag model assumes that 

perturbations are nonlinear, and the potential problem arises due to the fact that 

the velocity gradient at the interface is actually negative early on in the blast-

wave-driven interface problem (see Fig. 7a). The exponential term in equation 

(14) is then positive, and QSS function q = λ/σh grows due to radial compression 
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in addition to divergence. As long as this condition is satisfied, the perturbation 

actually becomes more linear in time even as its amplitude grows. The effect of 

this error is well illustrated by the simple test case of constant acceleration, no 

divergence, and constant velocity gradient 

! 

" # ±"
0
, where 

! 

"
0

> 0  so that the plus 

and minus signs denote positive and negative velocity gradient, respectively. The 

growth function and nonlinear single-mode growth are then given by 

  

! 

 fBD = m Ag /r
0
e

m"
0
t
#1( ) /"

0
 and 

  

! 

hnl (t) " h0e
±#0t = m A$

0
g /C 1" e

±#0t( ) /#0 . At 

very early times (to first-order in time), the velocity gradient is small and the 

classical result 

! 

hnl (t) " h0 = A#
0
g /Ct  is recovered. For positive velocity 

gradient, the late-time growth is exponential in time due to decompression. When 

the velocity gradient is negative, RT growth is eventually exactly compensated by 

compression and the amplitude asymptotes to a constant 

! 

hnl (t) = A"
0
g /C /#

0
. 

Without divergence, the single-mode perturbation that is initially nonlinear will 

remain nonlinear for all time. The same is not always true in the QSS model, 

where the ratio of wavelength to amplitude is proportional to the QSS function 

  

! 

q = e
m"

0
t . For negative velocity gradients, the perturbation becomes more linear 

exponentially in time. In our constant-velocity-gradient test problem, the QSS 

model then gives  

! 

h" (t) # hnl (±$0
,t) ="Age$0t 1# e#$0t( )

2

/$
0

2 ,      (21) 
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where the IC-independent quasi-self-similar term on the RHS is independent of 

the sign of the velocity gradient. The reason for the unlikely prediction that 

multimode perturbations growing in a fluid undergoing compression should 

evolve as fast as if the background fluid were expanding can be understood by 

considering the predicted wavelength growth, given by  

  

! 

"# (t) = "
0

m $#Ag em%0t &1( ) /%0[ ]
2

.      (22) 

For positive velocity gradient, we find the constant asymptotic limit 

! 

"# (t)$ "
0

+ %#Ag /&
0[ ]
2

 as expansion-driven growth eventually dominates 

instability-driven growth, while the negative gradient case tends to the 

exponentially-growing limit 

! 

"# (t)$ %#Ag /&
0

2( )e2&0t . This exponentially-

growing bubble diameter gives an exponentially-growing terminal velocity, and 

arises because the bubble-merger time tends to a wavelength-independent 

constant instead of the classical-RT behavior of growing with each successive 

generation of bubble merger. The end result is that the exponentially-growing 

terminal velocity compensates for the growing compression velocity. This 

behavior depends on an exponentially-growing ratio of bubble diameter to bubble 

height, and this same condition of course means that application of the nonlinear 

growth model and the terminal velocity on which it is based is not valid. 

 Wherever compression and/or divergence can give 

! 

kh <1, the 

inapplicability of the nonlinear model could be accounted for by including in the 
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terminal velocity a factor 

! 

min{1, (1+ A)"Ch(t) /#(t)}, which would give the 

smaller of the terminal velocity and the linear growth velocity. In order to again 

keep the perturbation amplitude out of the growth velocity and limit the 

complexity of the model, we instead simply hold the QSS q-function at unity 

while the velocity gradient is negative and once bubble merger has been initiated 

(see Fig. 7b). We consider this physically well-motivated since q-values greater 

than unity would imply bubble merger of linear perturbations while values 

smaller than unity would allow bubble merger that in compression would quickly 

return q(t) back to unity.  

 When the initial amplitude is smaller than λ/σ, as in Fig. 7 where the 

model is applied to a system with kh0 = 1/3 (P/P0 = 109, r0/rp = 10, and η = 0.01), 

we evolve the perturbation according to the single-mode model until this bubble-

merger threshold is reached. This single-mode phase gives q > 1 for ξ < 0.42 in 

Fig. 7b while holding the mode number in Fig. 7c at its initial value of 160.  

Finally, the effect of the reflected reverse shock on the bubble growth is 

approximated under the simple assumption that bubble motion is halted when 

reshock is initiated. This produces a kink in the scaled perturbation amplitude 

predicted by both the nonlinear single-mode and multimode QSS models (see Fig. 

7c). During the remainder of the fast growth phase, while the reflected reverse 

shock traverses the bubble region, the scaled amplitudes predicted by the model 
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decrease since the unperturbed interface radius is falling back towards the origin 

during this time (recall the discussion of Fig. 2). 

For the asymptotic fast-growth-phase bubble amplitude and mode number, 

blue triangles in Fig. 7 denote results obtained from a 2D RAPTOR simulation. 

As in the simulation shown in Fig. 3, the initial perturbation spectrum is a narrow 

Gaussian centered at mode 160 that has a width of 20 modes with peak mode 

k160h0 = 1/3. The model reproduces the asymptotic mode number mα,f = 16 

observed in the simulation and comes within 10% of the scaled bubble amplitude 

at reshock (within 20% at the end of the fast-growth phase).    

 

 

7. DEPENDENCE ON INITIAL CONDITIONS 

 

The single-mode fast-phase growth predicted by the model is plotted in 

Fig. 8a for various density ratios (dashed curves) as a function of the initial 

characteristic mode number m0. In the multimode case, the model predicts the 

asymptotic perturbation amplitude and the characteristic mode number. These 

expressions are plotted with the solid curves – the amplitude in Fig. 8a and the 

mode number in Fig. 8b. The dependence of the asymptotic ratio of bubble 

wavelength to amplitude is shown in Fig. 8c. If the initial amplitude is small and 

the initial mode number is high enough, the fBD
2 terms in equations (17) and (18) 
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dominate and the asymptotic interface structure is independent of the initial 

conditions. An implicit consequence of equations (17) and (18) is that though loss 

of memory of initial conditions is possible during the fast-growth phase, it 

requires a high initial mode number due to the finite duration and decay of the 

driving acceleration as well as the requirement that several generations of bubble 

merger are required. A similar analysis can be carried out for the Taylor-Sedov 

phase slow growth, where the growth is limited by the finite lifetime of the 

driving blast wave, but it is the intermediate phase growth that is relevant for the 

early observation of core materials in Type II SNe. For example, the presence of 

the outgoing reflected shock in the Kifonidis et al. (2003) simulation shows that 

this is the end of the fast growth phase. In either phase, the model predicts that 

unless the initial mode number is quite high, memory of the initial perturbation is 

retained in both the parallel and transverse scales.   

In Fig. 8, loss of memory of initial conditions is reflected in the flat 

portion of the QSS model curves. With our value of σ = 4, chosen to give α = 

0.053, the requirement is m0 > 100 at η ≤ 0.01and m0 > 104 for η = 0.1. However, 

the asymptotic mode number is sufficiently small at very small η that it shows 

only weak dependence on the initial conditions down to m0 ~ 40. Indeed, for a 

wide range of density ratios and initial mode numbers ranging from about 40 to 

greater than 104, the asymptotic mode number is predicted to be in the limited 

range of about 14-32. Since many 2D simulations are seeded either intentionally 
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or numerically with initial modes of order 100, it is not surprising that several 

groups find asymptotic structure characterized by modes ~20-32 and weak 

dependence on the initial perturbations. Such “preferred modes” are reported by 

Fryxell et al. (1991), Dwarkadas (2000), and Wang et al. (2001).   

The QSS model predicts variation in asymptotic fast-phase interface 

structure as the density ratio is varied from 0.01 to 0.001. This suggests that 

multimode instability growth in the BWI is not strictly unified even when the 1D 

explosion dynamics is. However, the predicted variation is small enough that 

unified instability growth as a working assumption does not seem unreasonable.   

For arbitrarily small initial amplitude and high mode number at A = 1, the 

QSS model gives hα,f/rf ~ 0.5 and mα,f ~ 16. Thus these are the maximum bubble 

amplitude and minimum mode number arising from small-scale initial conditions 

that we would expect to see at the end of the fast-growth phase.  

 Simulations of Type II SNe and their progenitors predict relatively low 

modes (m0 ~ 20-50 ) in the initial conditions. Kifonidis et al. (2003) show m0 ~ 24 

due to neutrino-driven convection in the core, or even much lower modes when 

the neutrino heating time is slower (Kifonidis et al. 2006). In 3D modeling of a 

Type II progenitor, Meakin and Arnett (2007a,b) find that turbulent convection 

provides density perturbations at the oxygen/carbon interface that include 

structures in the rage of m0 ~ 24-48. If these predictions are correct, then 

asymptotic fast-phase SN instability growth will be dependent on the initial 
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conditions. Consequently, it is important to understand the spectral structure of 

the initial perturbations, as it likely determines the late-time structure of the 

mixing zone. 

 

 

8. SPIKE MODELING AT HIGH ATWOOD NUMBER 

 

 For spikes, the drag term tends to zero and the terminal velocity diverges 

as the Atwood number approaches unity. Consequently, spikes at high Atwood 

number can require a long time to reach their terminal velocity, and the terminal 

velocity model will overestimate their growth. Early on, and as long as the drag 

term in the BD equation is small compared to the buoyancy term, we can use the 

free-fall instability velocity of equation (10). By equating the free-fall velocity uff 

= Agt to the terminal velocity, we can estimate that the free-fall model is valid as 

long as  
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As shown in Fig. 9 where these expressions are plotted as functions of the post-

shock density ratio, for sufficiently low mode spikes at small η* the free-fall 

model is valid throughout the fast-growth phase. 

Including the free-fall instability velocity equation (10) in the integrand of 

equation (7) for the modified amplitude, we find  
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In addition to the initial amplitude term, there are separate contributions from RM 

and RT:  
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The RM term is the standard impulsive model, linear in the initial k0, modified by 

decompression stretching. The free-fall RT term is independent of the initial 

perturbation.  In the free-fall approximation, the growth contribution due to RM 

exceeds the RT term a long as 
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Thus RM always dominates initially and continues to be significant throughout 

the fast-growth phase if the initial amplitude is large (k0a0 ~ 1). The RM impulsive 

model is a linear one, however, and so cannot be relied upon to give highly 

accurate predictions in the large-amplitude regime. Once perturbations become 

deeply nonlinear, we can no longer make conclusions about the relative 

importance of RT and RM based on the free-fall analysis.  

 Based on the η = 0.01 1D simulation and neglecting the density gradient 

in the 1D flow ahead of the interface, the model predicts fast-phase growth given 

by   

! 

hexp, f

rf
= 0.86

k0h
*

m
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1

42mA

2

1+ h0 /h
*
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hRT , f

rf
= 26.1A =18.7,        (27c) 

with a significant or dominant RM component relative to RT for k0a0 ≥ 0.72 (10% 

of the total for k0a0 = 0.07). In general, the ratio of fast-phase RM to RT growth is 

given by 

! 

hRM , f

hRT , f
=1.4k

0
a
0
.        (28) 

By construction, the free-fall model always predicts that spikes run well 

ahead of the shock during the fast-growth phase. In reality, the density gradient 
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typically results in significant drag before this occurs. As we shall see, where the 

post-shock density gradient ahead of the interface is insufficient to decelerate the 

spikes, their growth is instead limited by the upstream (in the shock frame) flow.   

 

 

9. FREE-FALL MODEL IMPLICATIONS FOR TYPE Ia SUPERNOVAE 

 

Chandra x-ray images of the Tycho SN remnant show striking instability 

growth. The measured power spectrum of the mixing zone is fit with a power-law 

power spectrum with peak at about mode 6 and an apparent local spectral peak at 

about mode 30 (Warren et al. 2005). Instability-driven spikes are observed at the 

forward shock, which is evidently strongly perturbed by their presence. SN 

remnant simulations predict significant separation between the shock and 

interface (Warren et al. 2005 and references therein) even when Rayleigh-Taylor 

effects are included (Dwarkadas 2000; Wang and Chevalier 2001).  

However, it may yet be that hydrodynamic instabilities alone can explain 

the proximity of the spikes to the forward shock. Multi-dimensional simulations 

that predict greater spacing between the shock and interface are initialized with 

1D input from explosion simulations or ejecta models. Since this initialization 

takes place after the forward shock has already passed into the ambient medium, it 

neglects any vorticity deposition at the interface due to the passing shock (ie the 
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RM component) that should be present in detonation models. If there are large-

amplitude initial perturbations on either the interface or the shock front then this 

RM component would be a significant omission in the post-shock spike growth. 

Indeed, the observed structure of Tycho’s interface and perturbed shock front is 

reminiscent of large amplitude RM observed in high-Mach-number laser-driven 

experiments [see, for example, our Fig. 10 adapted from Glendinning et al. 

(2003)].  

The requirement for such shock proximity can be easily estimated for the 

planar shock case (Rikanati et al. 2003). The instability speed in the impulsive 

model is  

! 

u
RM

= ka
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In the strong shock limit, the interface speed ui0 is related to the steady shock 

speed vi0 by  
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so the shock speed in the rest frame of the interface is  
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Within the impulsive model, then, the spikes are predicted to overtake the shock if  
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>
" #1

2A
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This condition can be satisfied either by large initial amplitude (large ka0) or high 

compressibility (adiabatic index γ close to unity). With γ = 5/3 and A = 1, the 

condition for shock proximity is 

! 

ka
0

>1/3 (

! 

ka
0

> 0.2 for γ = 1.4 and 

! 

ka
0

>1/6  for 

γ = 4/3).  

Log density plots from a 2D RAPTOR simulation of a spherical blast-

wave-driven interface with γ = 1.4 and 

! 

kh
0

= 0.20  (

! 

ka
0

= 0.16) are shown in Fig. 

11. As predicted by the impulsive model for planar steady-shock RM, the spikes 

in this spherical blast-wave driven system grow up to and perturb the shock front, 

yielding structure that is reminiscent of the Tycho observations. Note that kh0 here 

is comparable (actually slightly smaller) than that specified for the simulation 

shown in Fig. 3, but the presence of large-amplitude low modes in this case means 

that spikes extend further out in radius while remaining only marginally 

nonlinear. Consequently, we expect to find BWI shock proximity more readily 

observable when low modes are present in the initial conditions. 

Figure 12 shows log density plots from a series of simulations with initial 

kh0 varying from zero (in which perturbations are seeded only by numerics) up to 

unity. From this series, it appears that the threshold ka0 for strong shock proximity 

is consistent with the prediction from the impulsive model for planar steady-shock 

RM. Figure 13 shows that the two main factors affecting shock proximity, initial 

amplitude and compressibility, can be traded off against each other while 

preserving the same degree of shock proximity.  
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 Warren et al. (2005) report observed power spectra for both the interface 

and shock perturbations of the Tycho remnant that peak at mode six and exhibit a 

power-law decay (~k-n) with n ≈ 1.5 for the interface and n ≈ 2.2 for the shock. 

The forward shock and contact discontinuity exhibit the same power at low 

modes, but there is an order of magnitude more power at the contact discontinuity 

at high mode numbers. This is qualitatively consistent with having the interface 

spectrum imprinted on the shock front at early time since the shock perturbations 

decay faster at higher wavenumber (D'yakov 1954; Landau and Lifshitz 1987). 

For strong shocks, we find that the dispersion relation for mode-  
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l  shock 

perturbations is satisfied by an exponential decay rate of   
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If we approximate the shock trajectory with spherical Taylor-Sedov scaling, then 

we have  
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    = l /10 for " = 5/3 and l /15 for " =1.4. 

Allowing for the effect of divergence on the wavenumber, the evolution of shock 

perturbations that are decoupled from the piston (ie interface perturbations) is 

governed by 
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For 
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independent of β, where   

! 

a
l0

 and R
l0

 are the amplitude and shock radius at which 

the mode-  

! 

l  shock perturbation is decoupled from the interface perturbation. 

Because different modes decouple from the shock at different radii, it is difficult 

to obtain a quantitative prediction of the shock front spectrum as a function of 

radius from equation (36). However, it does illustrate the faster decay of higher 

modes.  

Delayed detonation offers a potential source of large-initial-amplitude 

low-mode RM. Even multi-spot ignition models in Type Ia explosion simulations 

produce very low modes via RT-unstable deflagration (for example Ropke et al. 

2006). These modes exist in the form of large-scale ash bubbles surrounded by 

higher-density unburned fuel. In the delayed detonation picture, a supersonic 

detonation then consumes the remaining fuel. As it propagates around the ash 

bubbles, this supported shock must also send lower-velocity unsupported shocks 

into the bubbles, resulting in a highly perturbed shock emerging from the outer 

extent of the deflagration region. Indeed, such a highly structured shock is evident 

in 3D delayed-detonation simulations (Fig. 1 of Gamezo et al. 2004). If the 

deflagration region extends far enough out that the shock does not have time to 

symmetrize before reaching the surface of the star, then we would have precisely 
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the kind of large-amplitude low-mode RM BWI component that should produce 

shock proximity at the present Tycho epoch.  

In that case, the dominant low modes observed in the Tycho remnant 

would result directly from the initial perturbations rather than an inverse cascade 

from smaller scales. Such a direct correlation between the asymptotic structure 

and the initial conditions would mean that structure observed now contains 

information about the combustion process. For example, the shock structure in the 

Gamezo et al. (2004) simulations might exhibit a spectrum comparable to that 

observed in present-day Tycho observations, while an off-center detonation not 

preceded by a deflagration stage might seed a dominant   

! 

l =1 mode. If cosmic-ray 

acceleration and other scenarios are deemed insufficient to produce the observed 

degree of shock proximity, then combustion models that do not include a 

detonation phase might be ruled out. 

 

 

10. FREE-FALL MODEL IMPLICATIONS FOR TYPE II SUPERNOVAE 

 

 Enhanced growth of perturbation spikes relative to the forward shock due 

to the RM component appears to play an important role in Type II explosion 

simulations of Kifonidis et al. (2006). In these calculations, a longer neutrino 

heating time results in vigorous convection in the star’s core. This in turn yields 
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kinks in the forward shock that deposit vorticity as they are transmitted through 

the inner interfaces. Spikes associated with these large-amplitude low-mode 

perturbations grow up to the shock, allowing core material to mix through to the 

hydrogen shell without deceleration by the post-shock helium shell. Such 

deceleration in the same group’s earlier calculations reduced heavy element 

velocities to values inconsistent with observations (Kifonidis et al. 2003). With 

the slower neutrino heating and consequent large-amplitude RM, the calculated 

velocities agree with the data.  

 

  

11. ROLE OF HIGH-ENERGY-DENSITY LABORATORY ASTROPHYSICS 

 

Euler scaling and the unified nature of the blast-wave-driven interface 

problem mean that the hydrodynamics at work in the supernova can be scaled 

down and studied in the laboratory. Laser-driven laboratory experiments are 

routinely used to study shock- and blast-wave-driven instabilities, and Euler 

scaling has been applied to make connections to astrophysical systems such as 

supernovae (Ryutov et al. 1999; Remington et al. 2006 and references therein).  

In ongoing planar experiments at the OMEGA laser facility (Soures 1996) 

at the University of Rochester’s Laboratory for Laser Energetics, the laser is used 

to drive a high-Mach-number planar blast wave into one end of a cylindrical 
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target (Drake et al., 2002; Robey et al. 2003; Miles et al. 2004). The target 

consists of a higher-density plastic section and a lower-density foam section in 

contact along a perturbed interface. X-ray radiography through the side of the 

target is used to produce images of the developing instability analogous to those 

obtained in the RM experiment of Fig. 10. The incident blast wave in these 

experiments is sufficient to drive the instability deep into the nonlinear regime.  

Because analogous divergent blast-wave-driven experiments would 

require much more drive energy, they cannot be realized on the OMEGA laser 

facility. On the other hand the National Ignition Facility (NIF) (Campbell 1991), 

now nearing completion at Lawrence Livermore National Laboratory, will offer 

the possibility to conduct a truly SN-relevant divergent experiment. The axially 

symmetric target could notionally consist of concentric titanium, heavy-foam, and 

light-foam shells that are mass-scaled surrogates for the metal, helium, and 

hydrogen shells in a Type II SN progenitor (see Fig. 14), with perturbations 

machined onto one or both of the surrogate Si/O and He/H interfaces. A 

nanosecond-scale laser pulse would be used to drive a divergent blast wave into 

the target, and the evolving structure could be imaged at times exceeding 100 ns. 

This platform would allow investigation of appropriate multi-interface 

interactions including the deceleration of fast inner spikes by the outer-layer shell, 

divergence effects, sensitivity to initial perturbations, 3D vs 2D and turbulent vs. 

non-turbulent instability evolution, and code validation. For example, Fig. 15 
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shows predictions from a pair of CALE simulations of a notional experiment to 

investigate the effect of large-amplitude low modes on mixing of surrogate core 

material out into the surrogate hydrogen shell.   

 A Type Ia-relevant experiment would be very similar but would include a 

single interface that could include perturbations of various initial amplitudes to 

investigate shock proximity effects. Various ambient-medium surrogates could be 

used to investigate compressibility effects on the shock-interface standoff. 

 

 

10. CONCLUSIONS AND FUTURE DIRECTIONS 

 

In summary, the divergent blast-wave-driven interface is a fundamental 

hydro instability problem that is particularly relevant to mixing in SNe. The 

existence of unified solutions at high Mach number and small density ratio 

suggests that general conclusions can be drawn about the likely asymptotic 

structure of the mixing zone. Insight into these conclusions can be attained by 

application of simple buoyancy-drag and bubble merger models modified to 

include the effects of divergence and decompression. In general, these effects 

preclude the true self-similar growth of classical RT, but can be incorporated into 

a quasi-self-similar growth picture. Where the unified solution to the 1D problem 

applies, multi-dimensional instability growth is not predicted to be strictly unified. 
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Loss of memory of initial conditions can occur in the quasi-self-similar model, 

but high initial mode numbers are required for this to happen during the fast-

growth phase. Despite the high-mode-number requirement for true loss of 

memory of initial conditions and the lack of strictly unified perturbation growth, 

the late-time asymptotic structure of the mixing zone is only weakly dependent on 

the initial conditions over a wide range of density ratios and initial perturbations. 

Still, since very high modes are not dominant in the initial conditions predicted 

for Type II SNe, their late-time instability growth is likely influenced by details of 

the initial conditions.  

Where dominant low-modes are observed (up to about mode ten), they 

result from the initial perturbations rather than an inverse cascade from smaller 

scales. This means that the interface structure observed now in the Tycho remnant 

contains direct information about the combustion process. 

Large-amplitude initial conditions yield an RM contribution that is 

significant or dominant relative to RT. The RM contribution will always be 

present where interface and transmitted shock are misaligned, whether due to pre-

transmission perturbations on the interface or the shock front. For sufficiently 

large-amplitude perturbations, we expect shock proximity to the growing spikes 

throughout the fast-growth phase. In the BWI system, the shock proximity effect 

can produce shock-interface structure that closely resembles that observed in the 
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Tycho remnant. Initial conditions required to produce such structure might 

naturally arise following a deflagration to detonation transition.  

In the future, we intend to run 3D simulations of the BWI system for 

comparison of 2D vs. 3D effects. Relative to the 2D calculations presented here, 

we expect faster spike growth and a further relaxed shock proximity requirement. 

The inverse cascade to larger scales should proceed more slowly in 3D than in 

2D, and the mixing zone will exhibit finer mixing and more small-scale turbulent 

structure like that apparent in the Tycho remant but not the simulation in Fig. 12. 

Finally, Euler scaling and the unified nature of the BWI problem enable 

scaled laboratory experiments that are relevant to supernova instability 

hydrodynamics. Consequently, laser-driven laboratory experiments might be used 

to help resolve some of the outstanding questions in supernova explosion 

hydrodynamics.  
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Fig. 1.--Blast-wave instability (BWI) schematic: A blast wave is initiated at the 

center of a sphere of density ρ1 located in an ambient fluid with density ρ2. 

Perturbations on the surface of the sphere are driven unstable upon passage of the 

blast wave, and subsequently grow in amplitude under the combined effect of 

Richtmyer-Meshkov (RM), Rayleigh-Taylor (RT), and material decompression. 

The six dimensional parameters in the unperturbed problem are the drive pressure 

P ∝ E ∝ T, the piston radius rp, the sphere radius r0, the densities ρ1 ∝ m1 and ρ2, 

and the ambient pressure P0. This number is reduced to four when the conditions 

P/P0 >> 1 and rp/r0 << 1 are satisfied and to three when in addition η << 1. 

 

Fig. 2.--Radius-time (r-t) diagram for a blast-wave driven interface with P/P0 = 

109, r0/rp = 10, and η = 0.01. The equal mass radius rm, which is the point at which 

the interface has swept up a mass of low density material equal to the mass of the 
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denser fluid, is the governing length scale. The evolution of the problem is 

divided into three phases: an early-time ejecta-dominated (ED) phase, an 

intermediate phase, and the late-time Taylor-Sedov (TS) phase. 

 

Fig. 3.--Log density plots from a two dimensional RAPTOR simulation illustrate 

BWI perturbation growth. Dimensionless time and interface radius (see text) are 

shown for each image. In this case P/P0 = 107, r0/rp = 2.25, and , and η = 0.01. The 

incident blast wave crosses the interface at τ ≈ 0.2 between (a) and (b). The 

reverse shock forms and begins to propagate back towards the center in (c), where 

it converges in (d). Multimode perturbations seeded on the interface grow into 

outward-going spikes of material 1 and inward “rising” bubbles of material 2. In 

(e), the reflected reverse shock returns to the developing mixing zone, which is 

reshocked in (f). This second shock exits the mixing zone in (g) on its way to 

overtake the main shock, having set a very complicated initial condition for the 

ensuing TS phase.  

 

Fig. 4.--Scaled radius vs time plots for blast-wave-driven interfaces with various 

density ratios. In each case P/P0 = 109 and r0/rp = 10. Radius and time are in each 

case scaled by the equal mass radius and time defined in the text. At low density 

ratio, a unified solution exists and the scaled plots are nearly identical.  
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Fig. 5.--Log density images from a pair of RAPTOR simulations with different 

drive pressures illustrate the drive-energy independence of the instability growth 

for identical initial perturbation spectra and radii. With the drive pressure lower 

by a factor of 100, the characteristic time is a factor of 10 longer but the interface 

structure is qualitatively the same at the same scaled time. In each case P/P0 = 109 

and r0/rp = 2.25 and we are comparing at ri/rm = 1.5.  

 

Fig. 6.--Scaled (a) decompression factor, (b) decompression factor scaled by r0/rm, 

(c) RT growth function, (d) growth function scaled by (r0/rm)2, (e) stretch function 

scaled by (r0/rm)2, and (f) ratio of RT growth function to stretch function. All are 

shown for three different density ratios and two scaled piston radii. At low density 

ratio where the unified solution to the 1D blast-wave-driven interface problem is 

valid, the decompression factor, RT growth function, and stretch function are not 

unified, but can be made so by scaling by powers of r0/rp. The growth and stretch 

functions require the same scale factor. Therefore their ratio, which is 

proportional to the nonlinear single-mode growth predicted by the terminal-

velocity buoyancy-drag model for high mode numbers, is also unified.  

 

Fig. 7. Buoyancy-drag and QSS model inputs and predictions for a system with 

P/P0 = 109, r0/rp = 10, η = 0.01, and characteristic m0 = 160, with inputs taken 

from a 1D simulation. All are plotted against the scaled interface radius: (a) 
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Interface velocity and velocity gradient at the interface position, (b) RT growth 

function and QSS self-similarity function, (c) mode number with scaled amplitude 

as fiducial, and (d) bubble amplitude (nonlinear single-mode as well as QSS 

multimode) and interface acceleration. In (c) and (d), blue triangles denote results 

from a 2D RAPTOR simulation. Nonlinear single-mode growth is used until the 

bubble-merger threshold h = l/σ is reached. Up to the equal-mass radius (ξ = 1), 

the velocity gradient is negative and the interface is in compression. During this 

time and once bubble merger is initiated, we fix the QSS self-similarity parameter 

to unity. Bubble merger and amplitude growth are halted when the reflected 

reverse shock reaches the mixing zone. 

 

Fig. 8.--Asymptotic fast-phase (a) scaled bubble amplitude, (b) mode number, and 

(c) QSS function from the quasi-self-similar growth model vs initial mode 

number m0. In the amplitude plot, dashed lines denote the growth predicted for 

nonlinear single-mode perturbations. At high initial mode number, the interface 

structure loses its dependence on m0, signifying that memory of the initial 

conditions has been lost. When very low, the density ratio has only a weak effect 

on the asymptotic interface structure. 

 

Fig. 9.--Range of validity of the freefall model for spikes at low density ratio: (a) 

limiting spike amplitude normalized to perturbation wavelength. (b) Limiting 
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mode number for the case of spike amplitude equal to interface radius. At low 

density ratio, the freefall model remains valid for sufficiently low mode-spikes 

throughout the fast-growth phase. 

 

Fig. 10.--X-ray radiograph of a laser-driven planar RM experiment with large 

initial amplitude (kh0 = 0.92, λ = 150 µm) [Adapted from Glendinning et al. 

2003]. A Mach ~ 10 steady shock is incident on a perturbed plastic/foam 

interface. Due to the large initial amplitude, the RM spike growth speed is higher 

than the shock recession speed in the interface frame. Consequently, the spikes 

grow up to and perturb the shock front.  

 

Fig. 11.--Large amplitude BWI exhibits shock proximity at the scaled Tycho SNR 

radius [(Forward shock radius)/(Reverse shock radius) ~ 0.7] and shock-interface 

structure that resembles Chandra x-ray data (Warren et al. 2005). The initial 

perturbation spectrum proscribed in the simulation is peaked at mode six with a 

power law decay to higher mode numbers.  

 

Fig. 12.--Varying the degree of shock proximity by changing the initial amplitude 

in a series of RAPTOR BWI simulations. At small initial amplitude, the RM 

contribution to the fast-phase growth is also small and the shock front is smooth. 

At about the threshold predicted by the planar strong shock relations and 
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impulsive RM model (ka0 = 0.2 for γ = 1.4), the spikes extend to and perturb the 

shock front. 

 

Fig. 13.--Log density plots from a pair of RAPTOR BWI simulations in which the 

initial amplitude and fluid compressibility are traded off each other while 

preserving the degree of shock proximity predicted by the planar strong shock 

relations and impulsive RM model. 

 

Fig. 14.--Notional divergent multi-interface Type II SN experiment for the 

National Ignition Facility laser. Titanium, heavy-foam, and light -oam shells are 

mass-scaled surrogates for the metal, helium, and hydrogen shells in the 

progenitor star. Consequently, the evolving structure is comparable to that 

observed in core-collapse simulations of Kifonidis et al. (2003). 

 

Fig. 15.--Prediction for a pair of laser-drive NIF experiments designed to 

investigate the effect of having large-amplitude low modes in the initial 

conditions. In each case, the magenta insert shows the initial Ti inner shell. The 

lower half of each figure shows density, while the upper half is colored by 

material: Titanium (core surrogate) is aqua, heavy foam (helium surrogate) is 

green, and light foam (hydrogen surrogate) is blue. In (b), a large-amplitude mode 

six pre-imposed on the laser-irradiated surface results in a perturbed shock that 
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transmits that mode to the core/He interface surrogate. This results in enhanced 

mixing through the surrogate He/H mixing zone. 
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Fig. 1.--Blast-wave instability (BWI) schematic: A blast wave is initiated at the center of a
sphere of density ρ1 located in an ambient fluid with density ρ2. Perturbations on the
surface of the sphere are driven unstable upon passage of the blast wave, and
subsequently grow in amplitude under the combined effect of Richtmyer-Meshkov (RM),
Rayleigh-Taylor (RT), and material decompression. The six dimensional parameters in
the unperturbed problem are the drive pressure P ∝ E ∝ T, the piston radius rp, the
sphere radius r0, the densities ρ1 ∝ m1 and ρ2, and the ambient pressure P0. This
number is reduced to four when the conditions P/P0 >> 1 and rp/r0 << 1 are satisfied and
to three when in addition η << 1.



Fig. 2.--Radius-time (r-t) diagram for a blast-wave driven interface with P/P0 = 109, r0/rp =
10, and η = 0.01. The equal mass radius rm, which is the point at which the interface has
swept up a mass of low density material equal to the mass of the denser fluid, is the
governing length scale. The evolution of the problem is divided into three phases: an early-
time ejecta-dominated (ED) phase, an intermediate phase, and the late-time Taylor-Sedov
(TS) phase.
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Fig. 3.--Log density plots from a two dimensional RAPTOR simulation illustrate BWI
perturbation growth. Dimensionless time and interface radius (see text) are shown for
each image. In this case P/P0 = 107, r0/rp = 2.25, and , and η = 0.01. The incident blast
wave crosses the interface at τ ≈ 0.2 between (a) and (b). The reverse shock forms
and begins to propagate back towards the center in (c), where it converges in (d).
Multimode perturbations seeded on the interface grow into outward-going spikes of
material 1 and inward “rising” bubbles of material 2. In (e), the reflected reverse shock
returns to the developing mixing zone, which is reshocked in (f). This second shock
exits the mixing zone in (g) on its way to overtake the main shock, having set a very
complicated initial condition for the ensuing TS phase.
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solution exists and the scaled plots are nearly identical.
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Fig. 5.--Log density images from a pair of RAPTOR simulations with different drive
pressures illustrate the drive-energy independence of the instability growth for identical
initial perturbation spectra and radii. With the drive pressure lower by a factor of 100,
the characteristic time is a factor of 10 longer but the interface structure is qualitatively
the same at the same scaled time. In each case P/P0 = 109 and r0/rp = 2.25 and we are
comparing at ri/rm = 1.5.



Fig. 6.--Scaled (a) decompression factor, (b) decompression factor scaled by r0/rm, (c)
RT growth function, (d) growth function scaled by (r0/rm)2, (e) stretch function scaled by
(r0/rm)2, and (f) ratio of RT growth function to stretch function. All are shown for three
different density ratios and two scaled piston radii. At low density ratio where the
unified solution to the 1D blast-wave-driven interface problem is valid, the
decompression factor, RT growth function, and stretch function are not unified, but can
be made so by scaling by powers of r0/rp. The growth and stretch functions require the
same scale factor. Therefore their ratio, which is proportional to the nonlinear single-
mode growth predicted by the terminal-velocity buoyancy-drag model for high mode
numbers, is also unified.
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Fig. 7. Buoyancy-drag and QSS model inputs and predictions for a system with P/P0 = 109, r0/rp
= 10, η = 0.01, and characteristic m0 = 160, with inputs taken from a 1D simulation. All are
plotted against the scaled interface radius: (a) Interface velocity and velocity gradient at the
interface position, (b) RT growth function and QSS self-similarity function, (c) mode number
with scaled amplitude as fiducial, and (d) bubble amplitude (nonlinear single-mode as well as
QSS multimode) and interface acceleration. In (c) and (d), blue triangles denote results from a
2D RAPTOR simulation. Nonlinear single-mode growth is used until the bubble-merger
threshold h = l/σ is reached. Up to the equal-mass radius (ξ = 1), the velocity gradient is
negative and the interface is in compression. During this time and once bubble merger is
initiated, we fix the QSS self-similarity parameter to unity. Bubble merger and amplitude
growth are halted when the reflected reverse shock reaches the mixing zone.
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Fig. 8.--Asymptotic fast-phase (a) scaled bubble amplitude, (b) mode number, and (c)
QSS function from the quasi-self-similar growth model vs initial mode number m0. In the
amplitude plot, dashed lines denote the growth predicted for nonlinear single-mode
perturbations. At high initial mode number, the interface structure loses its dependence
on m0, signifying that memory of the initial conditions has been lost. When very low, the
density ratio has only a weak effect on the asymptotic interface structure.
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Fig. 10.--X-ray radiograph of a laser-driven planar RM experiment with large initial
amplitude (kh0 = 0.92, λ = 150 µm) [Adapted from Glendinning et al. 2003 ]. A Mach ~
10 steady shock is incident on a perturbed plastic/foam interface. Due to the large
initial amplitude, the RM spike growth speed is higher than the shock recession speed
in the interface frame. Consequently, the spikes grow up to and perturb the shock
front.
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Fig. 11.--Large amplitude low-mode BWI exhibits shock proximity at the scaled Tycho
SNR radius [(Forward shock radius)/(Reverse shock radius) ~ 0.7] and shock-interface
structure that resembles Chandra x-ray data (Warren et al. 2005). The initial
perturbation spectrum proscribed in the simulation is peaked at mode six with a power
law decay to higher mode numbers.



Fig. 12.--Varying the degree of shock proximity by changing the initial amplitude in a
series of RAPTOR BWI simulations. At small initial amplitude, the RM contribution to
the fast-phase growth is also small and the shock front is smooth. At about the
threshold predicted by the planar strong shock relations and impulsive RM model (ka0
= 0.2 for γ = 1.4), the spikes extend to and perturb the shock front.



Fig. 13.--Log density plots from a pair of RAPTOR BWI simulations in which the initial
amplitude and fluid compressibility are traded off each other while preserving the
degree of shock proximity predicted by the planar strong shock relations and impulsive
RM model.
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Fig. 14.--Notional divergent multi-interface Type II SN experiment for the National
Ignition Facility laser. Titanium, heavy-foam, and light -oam shells are mass-scaled
surrogates for the metal, helium, and hydrogen shells in the progenitor star.
Consequently, the evolving structure is comparable to that observed in core-collapse
simulations of Kifonidis et al. (2003).



Fig. 15.--Prediction for a pair of laser-drive NIF experiments designed to investigate
the effect of having large-amplitude low modes in the initial conditions. In each case,
the magenta insert shows the initial Ti inner shell. The lower half of each figure shows
density, while the upper half is colored by material: Titanium (core surrogate) is aqua,
heavy foam (helium surrogate) is green, and light foam (hydrogen surrogate) is blue.
In (b), a large-amplitude mode six pre-imposed on the laser-irradiated surface results
in a perturbed shock that transmits that mode to the core/He interface surrogate. This
results in enhanced mixing through the surrogate He/H mixing zone.
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